Small time Chung-type LIL for Lévy processes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shifted small deviations and Chung LIL for symmetric alpha-stable processes

Let Xα be a symmetric α-stable Lévy process with α ∈ (1, 2). We consider small ball probabilities of the following type P {‖Xα − λ f‖ < r} as r → 0, and λr → 0 or λr = c , c > 0, where ‖ · ‖ is the sup-norm and f ∈ C[0, 1] that starts at 0. We obtain the exact rate of decrease for these probabilities including constants. Using these small ball estimates, we obtain a functional LIL for Xα with a...

متن کامل

Small Time One-Sided LIL Behavior for Lévy Processes at Zero

We specify a function b0(t) in terms of the Lévy triplet such that lim supt→0Xt/b0(t) ∈ [1, 1.8] a.s. iff ∫ 1 0 Π (+)(b0(t))dt < ∞, for any Lévy process X with unbounded variation and Brownian component σ = 0. We show with example that there are cases when lim supt→0Xt/b(t) = 1 a.s., but b(t) is not asymptotically equivalent to b0(t), as t goes to 0. We achieve this by introducing an integral c...

متن کامل

Small Time Two-Sided LIL Behavior for Lévy Processes at Zero

We wish to characterize when a Lévy process Xt crosses boundaries b(t), in a two-sided sense, for small times t, where b(t) satisfies very mild conditions. An integral test is furnished for computing the value of lim supt→0 |Xt|/b(t) = c. In some cases, we also specify a function b(t) in terms of the Lévy triplet, such that lim supt→0 |Xt|/b(t) = 1.

متن کامل

Discrete Time Portfolio Selection with Lévy Processes

This paper analyzes discrete time portfolio selection models with Lévy processes. We first implement portfolio models under the hypotheses the vector of log-returns follow or a multivariate Variance Gamma model or a Multivariate Normal Inverse Gaussian model or a Brownian Motion. In particular, we propose an ex-ante and an ex-post empirical comparisons by the point of view of different investor...

متن کامل

Variance swaps on time-changed Lévy processes

We prove that a multiple of a log contract prices a variance swap, under arbitrary exponential Lévy dynamics, stochastically time-changed by an arbitrary continuous clock having arbitrary correlation with the driving Lévy process, subject to integrability conditions. We solve for the multiplier, which depends only on the Lévy process, not on the clock. In the case of an arbitrary continuous und...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bernoulli

سال: 2013

ISSN: 1350-7265

DOI: 10.3150/11-bej395